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We introduce a simple geometric model for a double-stranded and double-helical polymer. We study the
statistical mechanics of such polymers using both analytical techniques and simulations. Our model has a
single energy scale which determines both the bending and twisting rigidity of the polymer. The helix melts at
a particular temperatureTc below which the chain has a helical structure and above which this structure is
disordered. Under extension we find that for small forces, the behavior is very similar to wormlike chain
behavior but becomes very different at higher forces.
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Recent developments in single molecule manipulation
techniques have led to the detailed study of the mechanical
properties of DNA and other biomolecules as well as their
response to applied fields. The model most used in the study
of the large-scale properties of biopolymers is that of the
wormlike chain[1] in which the polymer flexibility(struc-
ture) is determined by a single length, the persistence length
Lp which measures the tangent–tangent correlations. For ex-
ample, DNA has a persistence lengthLp<50 nm. Such
coarse-grained models are needed to understand thestatisti-
cal behavior of long chains with alarge number of mono-
mers. They are complementary to chemically specific models
which describe accurately thelocal effects of external fields
but generally cannot deal with long chains[2]. Generaliza-
tions of the wormlike chain to introduce twist degrees of
freedom have also been proposed[3]. Whilst the wormlike
chain model and its generalizations give a good account of
DNA under small fields(perturbations), it fails when these
perturbations become large, e.g., under tensional forces
above 65 pN[4,5]. Such situations are biologically relevant
in, for example, DNA replication and repair.

DNA is double stranded and helical. We introduce a geo-
metric model which includes three important ingredients of
DNA in B-form. First, the double-stranded nature of DNA
given by the two phosphate backbones; second, the hydrogen
bonds that keep the two strands together; and third, the in-
teractions between the bases that bring about the twisted
structure. Similar models could be used to study other
double-helical polymers such as F-actin. The model is a gen-
eralization of the double-stranded semiflexible(ribbon) poly-
mer introduced by Liverpool, Golestanian, and Kremer
(LGK) [6] which takes into account the first two aspects but
ignores the third. Other ribbon models have also been pro-
posed by a number of authors[7]. It will be our conclusion
that it is exactly this third property, the base-stacking inter-
action, which can account for many of theelasticproperties
of DNA. In our model, therigidity of the individual strands
is irrelevant for the effective persistence length,Lp, which is
determined by the base-stacking interaction, unlike Z. Haijun
et al. [8], who proposed another generalization of the LGK
model with base-stacking interactions. In their model the
bending rigidity of DNA is due to the elasticity of single

strands. Our model is therefore consistent with the large dif-
ference between the persistence length of single- and double-
stranded DNA measured experimentally. Our model can eas-
ily be extended to include excluded volume and electrostatic
interactions which for the moment have been ignored[9]. We
do not attempt to make quantitative comparison with experi-
ments but point out qualitative differences between simpler
models. Our aim is rather to suggest a minimal model re-
quired to understand experimental results.

The polymer is embedded in three-dimensional(3D)
space. As for the ribbon, we see qualitatively different be-
havior for the high- and low-temperature regimes with a
melting, which in this framework corresponds to an unwind-
ing of the helix, at particular temperatureTc.s4/9d2f5
+s2P/pad2/1+s2P/pad2g3/2B/kBa, where P and a are, re-
spectively, the pitch and diameter of the helix atT=0 andB
the “stiffness” of the base-stacking interaction. BelowTc,
there is a helical structure of the chain whilst aboveTc, the
helical structure vanishes. Unlike the ribbon,both the bend
and twist rigidity of the double-helical polymer are deter-
mined by the base-stacking interaction and the stiffness of
the individual strands is irrelevant. We also study the re-
sponse of the double-helical polymer to an extensional force
and find that for small forces, the mechanical response is
very similar to that of a wormlike chain but becomes signifi-
cantly different at higher forces.

The system is composed of two semiflexible chains mod-
eling the sugar phosphate backbones, each with rigidityA,
whose embeddings in three-dimensional space are defined by
R1ssd and R2ssd. Because of the covalent bonds(ECb

,100kBT at room temperature) between the alternating
phosphate and sugar molecules, the backbones are effec-
tively inextensible at the forces and temperatures we con-
sider. Similarly, the H bondssEHb,10kBTd between the two
backbones are assumed to keep the distance between the
chains constant.

The separation of the strands is fixed and given bya, and
the H bonds give the constraintR2ssd=R1ssd+abssd, where
bssd is a unit vector which we call thebond-orientation vec-
tor (see Fig. 1). The bond-orientation vector is perpendicular
to both strands. The infinitesimal distance in three-
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dimensional space between neighboring points on a single
strand is a function of the local curvature,]s

2Rissd of the
strands, where]xAsxd;]A/]x. The base-stacking interaction
can be modeled by a potentialVis]s

2Ri ,bd, where the sub-
script i P h1,2j refers to strand 1 or 2, which is a function of
the curvatures of the chains and the bond-vector only, with a
minimum given by a symmetric double helix. The Hamil-
tonian of the system is given by

H =E dshV1s]s
2R1,bd + V2s]s

2R2,bd+ Asu]s
2R1u2 + u]s

2R2u2dj.

s1d

The simplest example of such a potential which we will
use for the remainder of this paper is the quadratic
V1s]s

2R1,bd=B/2s]s
2R1−Hbd2 and V2s]s

2R2,bd=B/2s]s
2R2

+Hbd2. This is a potential ofstiffness B/2 with a minimum
when equivalent points on the two strands have equal and
opposite curvatures, ±H. More complicated potentials with
several minima are also possible(see later). We note that we
have not included the asymmetry of the DNA helix but a
similar but more complicated model could be defined for an
asymmetric double helix[9]. We implement the model by
introducing the “midcurve”r ssd: R1ssd=r ssd+sa/2db ,R2ssd
=r ssd−sa/2db. In terms of the tangent to the midcurvetssd
=]sr and the bond directorb the Hamiltonian of the system
can now be written as

Hft,bg =
B

2
E ds FS]stssd +

a

2
]s

2bssd − HbD2

+ S]stssd −
a

2
]s

2bssd + HbD2G , s2d

subject to the exact(local) constraints

St ±
a

2
]sbD2

= 1, b2 = 1, St ±
a

2
]sbD ·b = 0 s3d

corresponding to the chain inextensibility, fixed distance be-
tween strands and definition of the bond vector, respectively.

We make the assumption thatB@A since the bending rigid-
ity of single-stranded DNA is very small,sA/kBT,10Åd,
compared to the double-stranded form. We can define a typi-
cal length,=B/kBT, which together with the strand separa-
tion a and equilibrium radius of curvatureH−1 form the three
relevant lengths of the problem. This completes the formula-
tion of the model.

Ground state behavior. We can calculate the ground state
of this system from the conditionH=0 which gives,R1ssd
=sa/2dcossQsdê1+a/2 sinsQ sdê2+sÎ1−sa2Q2/4d ê3 and
R2ssd=−sa/2dcossQ sdê1−sa/2dsinsQ sdê2+sÎ1−sa2Q2/4d
ê3, whereQ=Î2H /a. This is a double helix with a pitch:
P=2p /QÎ1−sa2Q2/4d and the bond-director field,bssd=
−cossQ sdê1−sin sQ sdê2, wherehêij are an orthonormal set
of unit vectors.

Finite T behavior. Inspite of the simplification of the
model from using constraints, an exact analytic expression
for the partition function of the model is still not available.
For our analytic calculations, we use a very useful approxi-
mation[10] which describes correctly the equilibrium behav-
ior of correlation functions and even distribution functions, if
the end effects are taken into account carefully[11]. This is a
mean field approach that relaxes the local constraints to glo-
bal ones[10,11]. It may be thought of as a self-consistent
theory and corresponds to the saddle-point evaluation of path
integrals over the lagrange multipliers[12]. This approach
fails for some dynamical properties[13] which are outside
the scope of this paper. To implement this, we add a varia-
tional term to our Hamiltonian

Hm/kBT =E ds„sb/,dft − sa/2d]sbg2 + sb/,dft + sa/2d]sbg2

+ sca2/4,3db2 + e/,ft − sa/2d]sbg ·b + e/,ft

+ sa/2d]sbg ·b…,

whereb, c, ande are dimensionless constant Lagrange mul-
tipliers. The details of the calculations are similar to those in
LGK [6].

Two useful dimensionless geometric parametersu
=Ha/2 and v=4s, /ad2 can be used to characterize the
double-helical polymer. Note thatv is proportional toT−2

and can be viewed as a measure of temperature. We then
determine the constants self-consistently by demanding the
constraints of Eq.(3) to hold on average, where the thermal
average is calculated by using the total HamiltonianH
+Hm. Self-consistency leads to the following set of equa-
tions for the constantsb and c: sc+u2v2dfsb−uvd
+Îc+u2v2g=9v2/32;s1/4Î2bd+ 1

3s1/vdÎc+u2v2= 1
3 and e

=0. The above equations, which are nonlinear and difficult to
solve exactly, determine the behavior ofb andc functions of
u and v. One can solve the equations analytically in some
limiting cases corresponding toT→0 and T→`. For v
→`sT→0d and HÞ0, we find b, 9

32f1/s1−ud2g ,c
, 9

16fs1/u2d−s1/s1−ud2dguv and for v→0sT→`d and H
Þ0, we obtainb, 9

8 ,c,fs1/4u2d−1gu2v2. A full solution
requires a numerical treatment and shows simple monotonic
behavior for bothc andb [15].

FIG. 1. (a) The schematic double-helical polymer withR2ssd
=R1ssd+abssd. The midsection(solid) is in the minimum energy
configuration.(b) The discretization of the double-helix used in the
simulation.
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We can then calculate the correlation functions. For the
tangent–tangent correlation one obtains

ktssd · ts0dl =
3

4Î2b
e−Î2bss/,d <

T→0

s1 − ude−f3/4s1−udgss/,d, s4d

whereas for the bond-director field one obtains

kbssd ·bs0dl =
3i

2a2

,2

,2ÎD
F eiÎsuv−bd+ÎD,2ss/,d

Îsuv − bd + ÎD,2

+
e−iÎsuv−bd−ÎD,2s/,

Îsuv − bd − ÎD,2G
<

T→0

e−s3/8udss/,dcosSÎ2H

a
sD . s5d

We have defined a discriminant Dsu,vd
=s1/,2dÎsb−uvd2−sc+u2v2d. The tangent–tangent correla-
tion [Eq. (4)] of the double-helical polymers is similar to that
of a wormlike chain but with a length rescaling factor, and
decays exponentially at all temperatures. Equation(5) on the
other hand, indicates a change of behavior atD=0, i.e., sb
−uvd2=c+u2v2 for the bond-director correlation. The corre-
lation is overdampedfor sb−uvd2.c+u2v2 (high tempera-
tures), while it is underdamped (oscillatory) for sb
−uvd2,c+u2v2 (low temperatures). The interesting point
sb−uvd2=c+u2v2 happens forvc.9f9/4s1+4udg3, which
leads to the value forTc quoted above.

We emphasize that it is not a thermodynamic phase tran-
sition in the sense of long-range ordering and broken sym-
metry. It is a crossover that appears due to competing effects,
and the transition is from a state with some short-range order
to a state with a different short-range order. The crossover
(transition) point corresponds to a “Lifshitz line” for a 1D
system with competing interactions[6,14]. A Lifshitz line is
the boundary between a state with short-range antiferromag-
netic order and no order found in 1D systems with compet-
ing interactions[6,14]. At high temperatures, in addition to

the effects we describe we also expect the H bonds between
the bases to break, leading todenaturationwhich we cannot
treat in this model. In the lowT regime, we can read off the
bend (tangent) persistence lengthLTP= 4

3,s1−Ha/2d−1 and
twist (bond) persistence length,LBP= 4

3,Ha and helical fre-
quency s2H /ad1/2. Both the bend and twist rigidity of the
double-helical polymer are given by the same energy scale
B=kBT, and have little to do with the stiffness of the indi-
vidual strands.

Force extension: unwinding the helix. Under a stretching
force, which without loss of generality we orient along the z
axis F=Fẑ, the Hamiltonian becomesHF=H−F ·eds]sr .
Now ktzl=kt ·ẑlÞ0 and we must use connected correlation
functions to calculate the self-consistent equations. Defining
the dimensionless forcef =sFa/8kBTd we obtain the equa-
tions

1

4Î2b
+

1

3
S f

b
D2

v +
1

3

1

v
Îc + u2v2 =

1

3
,

sc + u2v2dfsb − uvd + Îc + u2v2g =
9v2

32
. s6d

We can solve Eqs.(6) for bsu,v , fd and csu,v , fd and the
extension per unit lengthzsu,v , fd is simply

z=
1

L
E

0

L

ktssdlds=
f

b
Îv. s7d

We can therefore obtain the force-extension relation for
the double-helical polymer. Equation(6) has been solved nu-
merically and in Fig. 2 we have plottedz againstf. In the
inset we compare the force-extension curve to that of the
WLC and find they are identical for small forces. We note
the interesting fact that the mean-field model can also be
used to calculate the force-extension behavior of the WLC. It
has the simple compact formfLp=f3z/2s1−z2d2g, where f
=F /kBT and Lp is the persistence length. We find that this
simple expression has an error of less than 4% compared to

FIG. 2. Force-extension relation for the
double-helical polymer. This is a log plot withu
=0.77 andv=115000, typical values for B-DNA
which corresponds to a low temperatureT,Tc

(note f =Fa/8). The dashed line shows theT=0
contour lengthÎ1−a2Q2/4. Inset: comparison
with wormlike chain at small forces.f andz are
dimensionless quantities.
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the “exact” value of Marko and Siggia[11]. We take this as
evidence for the utility of the mean-field technique for force-
extension calculations. The response of the polymer to exter-
nal torque, we leave as a subject for further work[9].

Simulations. We also performed Monte Carlo simulations
of the double-helical polymers. We discretized the “helical
ribbon” and implemented all the constraints in units of length
D (see Fig. 1). The discretized Hamiltonian is given by

bH = ,o
n=1

N−1S 2

D
+ H2D

− o
j=1

2 F tn+1
j · tn

j

D
+ s− 1d jHbn · stn+1

j − tn
j dGD , s8d

wheren is the monomer label(position along the chain) and
j P h1,2j the strand label(see Fig. 1). Since the Hamiltonian
is local, we grew chains with a local algorithm. In our simu-
lation the number of monomersN was taken to be 1000 for
each chain,D=1 and a=3. Typical conformations at high
and low temperatures are shown in Fig.3 .

Typical bond correlation functions are plotted in Fig. 4.
From the bond and tangent correlation functions, we can
obtain the bond and tangent persistence lengths. The “gener-
alized stiffnesses” are obtained from the slope of the log of
the (envelope) correlation functions. These stiffnesses are
plotted against temperatures,~T−1d in order to obtain the

bond correlation length asLBP=CBu, and the tangent corre-
lation length asLTP=CT, with the constants givenCB
=1.09±0.09 andCT=2.46±0.73, respectively. A comparison
with the mean-field results shows that the results are the
same to within a constant. This difference can be considered
as due to finite corrections to the mean-field solution due to
higher order terms in the 1/d expansion.

In conclusion, we have studied the properties of a well-
defined model of a double-helical, double-stranded semiflex-
ible polymer using a mean-field analytical approach as well
as extensive Monte Carlo simulations. We have shown non-
trivial differences between the high, low, and zero tempera-
ture behavior. A detailed comparison with the simulations
and the mean-field solution shows qualitative and almost
quantitative agreement. The fine structure studied in this
model gives a different behavior compared to a WLC. We
see this most clearly when the double-helical polymer is sub-
ject to an external pulling force. It shows two distinct re-
gimes. For low forces the dynamical response is similar to a
WLC, with the most relevant energetic contribution given by
the bending rigidity. At higher forces, when theT=0 contour
length is reached, the extension changes abruptly and in-
creases steeply as the double-helical structure isunwound.
This qualitatively agrees with the experimental results on
overstretched DNA[4,5], which nevertheless have a sharper
transition and a flatter plateau at a largerz than the ground-
state value. The graph is plotted on a log scale, making
clearer the complex behavior of the force-extension curve.
There are two obvious ways in which a sharper transition
could be obtained. First, we have used a simple quadratic
potential for the base-stacking interaction corresponding
only to an expansion about the minimum energy conforma-
tion. This leads to the lack of cooperativity we observe for

FIG. 3. Typical conformations at(a) low, (b) intermediate, and
(c) high temperatures.

FIG. 4. The kbssd ·bs0dl correlation function measured in the
simulations for temperatures,=400,50,3 andu=0.6 corresponding
to T,Tc andT.Tc. The averages were done over 200 statistically
independent samples.
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the base-stacking transition in our model. A more realistic
potential with a cutoff and/or several minima could change
the sharpness and number of transitions, as well as the value
of the extension at which the transition takes place. In addi-
tion one could imagine, as in mechanical unzipping experi-
ments on DNA, there could be cooperative effects due to the
effects of sequence disorder. Finally the effects of solvent
could play an important role in cooperativity.

After this work was submitted we became aware of the
work by B. Mergellet al. [16] which finds nob oscillations

in a ribbon model similar to the LGK model. We emphasize
that ribbon models are very different to the model presented
here which unlike the ribbon has a nonzero helical pitch at
T=0.
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