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Statistical mechanics of double-helical polymers
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We introduce a simple geometric model for a double-stranded and double-helical polymer. We study the
statistical mechanics of such polymers using both analytical techniques and simulations. Our model has a
single energy scale which determines both the bending and twisting rigidity of the polymer. The helix melts at
a particular temperatur€, below which the chain has a helical structure and above which this structure is
disordered. Under extension we find that for small forces, the behavior is very similar to wormlike chain
behavior but becomes very different at higher forces.
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Recent developments in single molecule manipulatiorstrands. Our model is therefore consistent with the large dif-
techniques have led to the detailed study of the mechanicdérence between the persistence length of single- and double-
properties of DNA and other biomolecules as well as theirstranded DNA measured experimentally. Our model can eas-
response to applied fields. The model most used in the studly be extended to include excluded volume and electrostatic
of the large-scale properties of biopolymers is that of thenteractions which for the moment have been igng@dwe
wormlike chain[1] in which the polymer flexibility(struc-  do not attempt to make quantitative comparison with experi-
ture) is determined by a single length, the persistence lengtinents but point out qualitative differences between simpler
L, which measures the tangent-tangent correlations. For exnodels. Our aim is rather to suggest a minimal model re-
ample, DNA has a persistence length~50 nm. Such quired to understand experimental results.
coarse-grained models are needed to understanstakisti- The polymer is embedded in three-dimensioriaD)
cal behavior of long chains with &rge number of mono-  gpace. As for the ribbon, we see qualitatively different be-
mers. They are complementary to chemically specific modelg,yior for the high- and low-temperature regimes with a
which describe accurately thecal effects of external fields melting which in this framework corresponds to an unwind-
b.Ut generally cannot deal .With I_ong chaiff. _Generaliza- ing of the helix, at particular temperature.=(4/9)?5
tions of the wormlike chain to introduce twist degrees Of+(2P/7-ra)2/1+(2P/77a)2]3’ZB/kBa, where P anda are, re-

freedom have also been proposé Whilst the wormiike pectively, the pitch and diameter of the helixTatO andB

chain model and its generalizations give a good account . ,, A :
DNA under small fields(perturbations it fails when these the “stiffness” of the base-stacking interaction. Beldw

perturbations become large, e.g., under tensional forcdbere is a helical structure of the chain whilst abdyethe

above 65 pN[4,5]. Such situations are biologically relevant helical structure vanishes. Unlike the ribbdrgth the bend
in, for example, DNA replication and repair. and twist rigidity of the double-helical polymer are deter-

DNA is double stranded and helical. We introduce a geomined by the base-stacking interaction and the stiffness of
metric model which includes three important ingredients ofthe individual strands is irrelevant. We also study the re-
DNA in B-form. First, the double-stranded nature of DNA sponse of the double-helical polymer to an extensional force
given by the two phosphate backbones; second, the hydrogémd find that for small forces, the mechanical response is
bonds that keep the two strands together; and third, the inery similar to that of a wormlike chain but becomes signifi-
teractions between the bases that bring about the twistegntly different at higher forces.
structure. Similar models could be used to study other The system is composed of two semiflexible chains mod-
double-helical polymers such as F-actin. The model is a gereling the sugar phosphate backbones, each with rigitljty
eralization of the double-stranded semiflexifiiebon) poly- ~ Whose embeddings in three-dimensional space are defined by
mer introduced by Liverpool, Golestanian, and KremerRi(s) and Ry(s). Because of the covalent bond&cy,
(LGK) [6] which takes into account the first two aspects but~10kgT at room temperatujebetween the alternating
ignores the third. Other ribbon models have also been prophosphate and sugar molecules, the backbones are effec-
posed by a number of authofg]. It will be our conclusion tively inextensible at the forces and temperatures we con-
that it is exactly this third property, the base-stacking inter-sider. Similarly, the H bondéE,,,~ 10kgT) between the two
action, which can account for many of teéasticproperties  backbones are assumed to keep the distance between the
of DNA. In our model, therigidity of the individual strands chains constant.
is irrelevant for the effective persistence lendth, which is The separation of the strands is fixed and giverapgnd
determined by the base-stacking interaction, unlike Z. Haijurthe H bonds give the constraif,(s)=R(s) +ab(s), where
et al. [8], who proposed another generalization of the LGKb(s) is a unit vector which we call thbond-orientation vec-
model with base-stacking interactions. In their model thetor (see Fig. 1 The bond-orientation vector is perpendicular
bending rigidity of DNA is due to the elasticity of single to both strands. The infinitesimal distance in three-
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We make the assumption tht> A since the bending rigid-
ity of single-stranded DNA is very smallA/kgT<10R),
compared to the double-stranded form. We can define a typi-
cal length€=B/kgT, which together with the strand separa-
tion a and equilibrium radius of curvatuté™ form the three
relevant lengths of the problem. This completes the formula-
tion of the model.

Ground state behaviolWe can calculate the ground state
of this system from the conditiof’=0 which gives,R4(s)
=(a/2)cog@s)é,+a/2 sin® s)&,+s\1-(a’0?/4) & and
Ra(s)=—(a/2)cog O )&~ (a/2)sin(® s)&+sy1-(a’@?/4)

&;, where®=12H/a. This is a double helix with a pitch:
P=27/0\1-(a?0?/4) and the bond-director fieldy(s)=
—-cos(® s)g;—sin (0 s)&,, where{é&} are an orthonormal set
FIG. 1. (a) The schematic double-helical polymer wiRy(s) of unit vectors.

=Ry(s)+ab(s). The midsection(solid) is in the minimum energy Finite T behavior Inspite of the simplification of the
configuration(b) The discretization of the double-helix used in the model from using constraints, an exact analytic expression
simulation. for the partition function of the model is still not available.

For our analytic calculations, we use a very useful approxi-
dimensional space between neighboring points on a singleation[10] which describes correctly the equilibrium behav-
strand is a function of the local curvaturéRi(s) of the ior of correlation functions and even distribution functions, if
strands, wheré,A(x) = 9A/ ox. The base-stacking interaction the end effects are taken into account caref[dlij. This is a
can be modeled by a potentiHl(aﬁRi,b), where the sub- Mean field approach that relaxes the local constraints. to glo-
scripti e {1, 2} refers to strand 1 or 2, which is a function of bal ones[10,1T. It may be thought of as a self-consistent
the curvatures of the chains and the bond-vector only, with §1€0ry and corresponds to the saddle-point evaluation of path

minimum given by a symmetric double helix. The Hamil- integrals over the lagrange multiplief&2]. This approach
tonian of the system is given by fails for some dynamical propertigd3] which are outside

the scope of this paper. To implement this, we add a varia-

tional term to our Hamiltonian
H= f ds{V;(Ry1,b) + Vo(ZR,,b)+ A(| 2R |? + |ZR )}

(1) Hm/kBT:J ds((b/€)[t - (a/2)dbT? + (b/€)[t + (a/2)db]?

The simplest example of such a potential which we will o 3n
use for the remainder of this paper is the quadratic +(ca/4t7)b” + ell[t - (a/2)dsb] - b + /[t
Vi(#R;,b) =B/2(R,~Hb)* and V,(dZR,b)=B/2(%R, +(a/2)b] - b),
+Hb)2. This is a potential oktiffness B2 with a minimum
when equivalent points on the two strands have equal andhereb, ¢, ande are dimensionless constant Lagrange mul-
opposite curvatures, = More complicated potentials with tipliers. The details of the calculations are similar to those in
several minima are also possilfkee latey. We note that we LGK [6].
have not included the asymmetry of the DNA helix but a Two useful dimensionless geometric parametars
similar but more complicated model could be defined for an=Ha/2 and v=4(¢/a)? can be used to characterize the
asymmetric double heli9]. We implement the model by double-helical polymer. Note that is proportional toT2
introducing the “midcurve’ (s): Ry(s)=r(s)+(a/2)b,R,(S)  and can be viewed as a measure of temperature. We then
=r(s)—(a/2)b. In terms of the tangent to the midcurts) determine the constants self-consistently by demanding the
=d4 and the bond directds the Hamiltonian of the system constraints of Eq(3) to hold on average, where the thermal

can now be written as average is calculated by using the total Hamiltonian
B 5 +H,,. Self-consistency leads to the following set of equa-

'H[t,b]=—JdS [(ast(s)+§&§b(s)—Hb> tions for the constantsb and c: _(c+u??)[(b-uv)

2 2 +\c+UP?]=902/32;(1/4(2b) + (1 /v)\c+u?=% and e

a 2 =0. The above equations, which are nonlinear and difficult to
+ (551(5) - Eﬁgb(s) + Hb) } : (2)  solve exactly, determine the behaviortéindc functions of
u andv. One can solve the equations analytically in some
subject to the exadlocal) constraints limiting cases corresponding t®6—0 and T—o. For v
4 )2 . —oo(T—0) and H#0, we find b~3[1/(1-u)?],c
(ti Easb) =1, b%=1, (ti Easb) b=0 (3 ~z[(1/v¥)-(1/(1-u)d]uw and for v—0(T—x=) and H

#0, we obtainb~ §,c~[(1/4u?)-1]u?v?. A full solution
corresponding to the chain inextensibility, fixed distance befequires a numerical treatment and shows simple monotonic
tween strands and definition of the bond vector, respectivelypehavior for bothc andb [15].
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which corresponds to a low temperatufec T,
(note f=Fa/8). The dashed line shows the=0
contour lengthy1-a?®2/4. Inset: comparison
with wormlike chain at small forced. andz are
dimensionless quantities.
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We can then calculate the correlation functions. For thehe effects we describe we also expect the H bonds between
tangent—tangent correlation one obtains the bases to break, leadingdenaturationwhich we cannot
10 treat in this model. In the low regime,4we can read off the
(t(s) -1(0)) = i_e—vz_b(s/e) ~ (1-u)e3a-uIEn (4 bend (tangen} persistence IengtlllTF:l:§€(1—Ha/2) L and
/ twist (bond persistence length,gp=3¢Ha and helical fre-
quency (2H/a)Y2. Both the bend and twist rigidity of the
double-helical polymer are given by the same energy scale
B=kgT¢ and have little to do with the stiffness of the indi-
vidual strands.

whereas for the bond-director field one obtains

3 2 |:ei\(uu—b)+\5€2(sl€)

(b(s) -b(0)) =

2a? €2v’5 \/(UU -b)+ \6152 Force extension: unwinding the helidnder a stretching
— force, which without loss of generality we orient along the z
.\ g\ (b)=Dersl axis F=F2, the Hamiltonian become${r=H-F-[dsiy .
\/m Now (t,)=(t-Z2)#0 and we must use connected correlation
o functipns to calculate the self-consistent equgtions. Defining
- e_(g,&,)(s,g)cos< /ﬁS)). 5) the dimensionless forcé=(Fa/8kgT) we obtain the equa-
a tions
We  have defined a  discriminant D(u,v) 1., }(i)z L1 T i= 1
=(1/€?)(b-uwv)?-(c+u??). The tangent-tangent correla- a2p  3\b T "3
tion [Eq. (4)] of the double-helical polymers is similar to that
of a wormlike chain but with a length rescaling factor, and 92
decays exponentially at all temperatures. Equag®ron the (c+u?d)[(b-uw) + Vc+ u??] = —. (6)
other hand, indicates a change of behaviobat0, i.e., (b 32

—uv)?=c+u?? for the bond-director correlation. The corre-
lation is overdampedor (b—uv)?>c+u?? (high tempera-
tures, while it is underdamped (oscillatory for (b
—uv)?<c+u? (low temperatures The interesting point 1(t f ~

(b-uv)?=c+u?%? happens forv,=9[9/4(1+4u)]?, which z=1 JO {t(s))ds= 1 . (@)
leads to the value fof. quoted above.

We emphasize that it is not a thermodynamic phase tran- We can therefore obtain the force-extension relation for
sition in the sense of long-range ordering and broken symthe double-helical polymer. Equatigé) has been solved nu-
metry. It is a crossover that appears due to competing effectsperically and in Fig. 2 we have plottedagainstf. In the
and the transition is from a state with some short-range ordénset we compare the force-extension curve to that of the
to a state with a different short-range order. The crossoveWLC and find they are identical for small forces. We note
(transition) point corresponds to aLifshitz ling for a 1D  the interesting fact that the mean-field model can also be
system with competing interactiof,14]. A Lifshitz line is  used to calculate the force-extension behavior of the WLC. It
the boundary between a state with short-range antiferromagpas the simple compact forifi.,=[3z/2(1-7%?], where f
netic order and no order found in 1D systems with compet=F/kgT and L, is the persistence length. We find that this
ing interactiong[6,14]. At high temperatures, in addition to simple expression has an error of less than 4% compared to

We can solve Eqgs(6) for b(u,v,f) and c(u,v,f) and the
extension per unit lengtk(u,v, ) is simply
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FIG. 4. The(b(s)-b(0)) correlation function measured in the
simulations for temperaturés=400,50,3 andi=0.6 corresponding
to T<T,andT>T,. The averages were done over 200 statistically
independent samples.

bond correlation length dsgp=Cguf and the tangent corre-
lation length asL;p=C+f¢ with the constants giverCg

FIG. 3. Typical conformations at) low, (b) intermediate, and =1.09%0.09 andC;=2.46+0.73, respectively. A comparison
(c) high temperatures. with the mean-field results shows that the results are the
same to within a constant. This difference can be considered

the “exact” value of Marko and Siggi1]. We take this as @S due to finite corrections to the mean-field solution due to

evidence for the utility of the mean-field technique for force-higher order terms in the #i/expansion. _

extension calculations. The response of the polymer to exter- [N conclusion, we have studied the properties of a well-

nal torque, we leave as a subject for further widk fjeflned model ofa double—h(_ellcal, dout_)le—stranded semiflex-
Simulations We also performed Monte Carlo simulations ible polymer using a mean-field analytical approach as well

of the double-helical polymers. We discretized the “helical2S €xtensive Monte Carlo simulations. We have shown non-

ribbon” and implemented all the constraints in units of lengthtrivial differences between the high, low, and zero tempera-

A (see Fig. 1 The discretized Hamiltonian is given by ture behavior. A detailed comparison with the simulations
and the mean-field solution shows qualitative and almost

N1/, quantitative agreement. The fine structure studied in this
BH={, (— +H%A model gives a different behavior compared to a WLC. We
A see this most clearly when the double-helical polymer is sub-

2 T4 4 ject to an external pulling force. It shows two distinct re-
-> {M+ (- D)Hb, - (], —t} D (8)  gimes. For low forces the dynamical response is similar to a
j=1 A WLC, with the most relevant energetic contribution given by
the bending rigidity. At higher forces, when tfie 0 contour
wheren is the monomer labebposition along the chajrand  |ength is reached, the extension changes abruptly and in-
j €{1,2 the strand labefsee Fig. 1 Since the Hamiltonian creases steeply as the double-helical structurenisound
is local, we grew chains with a local algorithm. In our simu- This qualitatively agrees with the experimental results on
lation the number of monomefs was taken to be 1000 for overstretched DNA4,5], which nevertheless have a sharper
each chainA=1 anda=3. Typical conformations at high transition and a flatter plateau at a largethan the ground-
and low temperatures are shown in Fig.3 . state value. The graph is plotted on a log scale, making
Typical bond correlation functions are plotted in Fig. 4. clearer the complex behavior of the force-extension curve.
From the bond and tangent correlation functions, we caThere are two obvious ways in which a sharper transition
obtain the bond and tangent persistence lengths. The “genateuld be obtained. First, we have used a simple quadratic
alized stiffnesses” are obtained from the slope of the log opotential for the base-stacking interaction corresponding
the (envelopg correlation functions. These stiffnesses areonly to an expansion about the minimum energy conforma-
plotted against temperatufé «T™1) in order to obtain the tion. This leads to the lack of cooperativity we observe for

n=1
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the base-stacking transition in our model. A more realistidn a ribbon model similar to the LGK model. We emphasize

potential with a cutoff and/or several minima could changethat ribbon models are very different to the model presented

the sharpness and number of transitions, as well as the valiere which unlike the ribbon has a nonzero helical pitch at

of the extension at which the transition takes place. In addiT=0.

tion one could imagine, as in mechanical unzipping experi-

ments on DNA, there could be cooperative effects due to the We have benefited from discussions with R. Everaers, R.

effects of sequence disorder. Finally the effects of solventGolestanian, and K. Kremer. The financial support of the

could play an important role in cooperativity. Royal Society and the National Science Foundation under
After this work was submitted we became aware of theGrant No. PHY-99-0794%at KITP) is gratefully acknowl-

work by B. Mergellet al. [16] which finds nob oscillations  edged.

[1] O. Kratky and G. Porod, Recl. Trav. Chim. Pays-B& 1106 [9] T. B. Liverpool (unpublisheg

(1949. _ _ _ [10] J. B. Lagowski, J. Noolandi, and B. Nickel, J. Chem. P35,
[2] W. K. Olson and V. B. Zhurkin, Curr. Opin. Struct. Biol0, 1266(1991); A. M. Gupta, and S. F. Edwardiid. 98, 1588
286 (2000. (1993; B-Y Ha and D. Thirumalaijbid. 103 9408(1995.

[3]1J. F Mark.o and E. D. Siggia, Macromolecul2g, 981(1994); [11] J. F. Marko and E. D. Siggia, Macromoleculds, 8759
C vt a1 ez, Py s 490 1855960, g . Ftor, prnt CondnalDAGSEL, D T
[4] S. B. Smith, Y. Cui, and C. Bustamante, Scien2el, 795 malai and B-Y Ha, |nT_heoret|caI and Mathematical Models in
(1996. Polymer Researchedited by A. GrosbergAcademic, New
York, 1998.

[5] P. Cluzelet al,, Science271, 792(1996. - )
[6] T. B. Liverpool, R. Golestanian, and K. Kremer, Phys. Rev, [12 F. David and E. Guitter, Europhys. Let, 709(1988; T. B.

Lett. 80, 405 (1998; T. B. Liverpool and R. Golestanian, Liverpool and S. F. Edwards, J. Chem. Phys03 6716
Phys. Rev. E62, 5488(2000). (1995.

[7] R. Everaers, R. Bundschuh, and K. Kremer, Europhys. Lett[13] T. B. Liverpool and A. C. Maggs, Macromoleculest, 6064
29, 263 (1999; I. A. Nyrkova, A. N. Semenov, and J-F. (200D; D. C. Morse, Phys. Rev. 658, R1237(1998.
Joanny, J. Phys. 1B, 1411(1996; S. Kumar and J. Singh, J. [14] R. M. Hornreich, R. Liebmann, H. G. Schuster, and W Selke,
Stat. Phys.89, 981 (1997; E. J. Janse van Rensbueg al,, Z. Phys. B35, 91 (1979.
ibid. 85, 103(1996. [15] A. De Col and T. B. Liverpoolunpublishegl

[8] Z. Haijun, Y. Zhang, and Z.-C. Ou-Yang, Phys. Rev. L&2, [16] B. Mergell, M. R. Ejtehadi, and R. Everaers, Phys. Re\6&:
4560(1999. 011903(2002.

061907-5



